Spectral and scattering theory for space-cutoff P (φ)2 models with variable metric

نویسندگان

  • C. Gérard
  • A. Panati
چکیده

We consider space-cutoff P (φ)2 models with a variable metric of the form

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : 0 90 6 . 54 78 v 1 [ m at h - ph ] 3 0 Ju n 20 09 SPECTRAL AND SCATTERING THEORY OF SPACE - CUTOFF CHARGED P ( φ ) 2 MODELS

We consider in this paper space-cutoff charged P (ϕ) 2 models arising from the quantization of the non-linear charged Klein-Gordon equation: (∂t + iV (x)) 2 φ(t, x) + (−∆x + m 2)φ(t, x) + g(x)∂ z P (φ(t, x), φ(t, x)) = 0, where V (x) is an electrostatic potential, g(x) ≥ 0 a space-cutoff and P (λ, λ) a real bounded below polynomial. We discuss various ways to quantize this equation, starting fr...

متن کامل

Spectral and Scattering Theory of Space - Cutoff Charged P ( Φ ) 2 Models

We consider in this paper space-cutoff charged P (ϕ) 2 models arising from the quantization of the non-linear charged Klein-Gordon equation: (∂t + iV (x)) 2 φ(t, x) + (−∆x + m 2)φ(t, x) + g(x)∂ z P (φ(t, x), φ(t, x)) = 0, where V (x) is an electrostatic potential, g(x) ≥ 0 a space-cutoff and P (λ, λ) a real bounded below polynomial. We discuss various ways to quantize this equation, starting fr...

متن کامل

Dilations‎, ‎models‎, ‎scattering and spectral problems of 1D discrete Hamiltonian systems

In this paper, the maximal dissipative extensions of a symmetric singular 1D discrete Hamiltonian operator with maximal deficiency indices (2,2) (in limit-circle cases at ±∞) and acting in the Hilbert space ℓ_{Ω}²(Z;C²) (Z:={0,±1,±2,...}) are considered. We consider two classes dissipative operators with separated boundary conditions both at -∞ and ∞. For each of these cases we establish a self...

متن کامل

Nonlinear Finite Element Analysis of Bending of Straight Beams Using hp-Spectral Approximations

Displacement finite element models of various beam theories have been developed using traditional finite element interpolations (i.e., Hermite cubic or equi-spaced Lagrange functions). Various finite element models of beams differ from each other in the choice of the interpolation functions used for the transverse deflection w, total rotation φ and/or shear strain γxz, or in the integral form u...

متن کامل

Fixed Point Theory in $varepsilon$-connected Orthogonal Metric Space

The existence of fixed point in orthogonal metric spaces has been initiated by Eshaghi and et. al [7]. In this paper, we prove existence and uniqueness theorem of fixed point for mappings on $varepsilon$-connected orthogonal metric space. As a consequence of this, we obtain the existence and uniqueness of fixed point for analytic function of one complex variable. The paper concludes with some i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008